Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559070

RESUMEN

Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimen to prevent antagonistic effects. Thus, this work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083518

RESUMEN

To improve treatment outcomes in non-small cell lung cancer (NSCLC), it is crucial to identify treatment strategies with the potential to exhibit drug synergism. This can lower the required effective dose, reducing exposure to drugs and associated toxicities, while improving treatment efficacy. In previous studies, drugs targeting the microRNA-155 or PD-L1 have been promising in restraining NSCLC tumor growth. We have developed a mathematical model that simulates the in vivo pharmacokinetics and pharmacodynamics of the novel nanoparticle-delivered anti-microRNA-155 for potential use with standard-of-care drug atezolizumab for NSCLC. Through modeling and simulation, we identified possible drug synergism between the two drugs that holds promise to improve tumor response at reduced drug exposure.Clinical Relevance-Identifying the possibility of drug synergism for an anti-microRNA-155 based nanotherapeutic with standard-of-care immunotherapy to improve lung cancer treatment outcomes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Resultado del Tratamiento , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...